Polynomial Methods and Convex Optimization for the Control of Input Constrained Systems
نویسندگان
چکیده
A polynomial approach is pursued for locally stabilizing discrete-time linear systems subject to input constraints. Using the Youla-Ku cera parametrization and geometric properties of polyhedra and ellipsoids, the problem of simultaneously deriving a stabilizing controller and the corresponding stability region is cast into a standard LMI problem. The approach is illustrated by a numerical example underlining the use of powerful CACSD tools such as the Polynomial Toolbox, Lmitool or Simulink for Matlab.
منابع مشابه
Estimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach
This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...
متن کاملImproved Constrained PID Control Design based on Connvex-Concave Optimization
In this paper, an algorithm is proposed to improve the design of constrained PID controller based on convex-concave optimization. This design method is based on the optimization of a performance cost function, taking into account the stability and efficiency constraints with frequency domain analysis in which the concepts of sensitivity and complementary sensitivity has been used. It is shown, ...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملThe KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings
The aim of present paper is to study a constrained programming with generalized $alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $alpha-$univex, $alpha-$preunivex, pseudo $alpha-$univex and $alpha-$unicave fuzzy mappings, and we discover that $alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $alp...
متن کامل